3.7.42 \(\int \frac {x^3 (a+b \text {ArcSin}(c x))}{(d+e x^2)^3} \, dx\) [642]

Optimal. Leaf size=153 \[ -\frac {b c x \sqrt {1-c^2 x^2}}{8 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {b \text {ArcSin}(c x)}{4 d e^2}+\frac {x^4 (a+b \text {ArcSin}(c x))}{4 d \left (d+e x^2\right )^2}+\frac {b c \left (2 c^2 d+3 e\right ) \text {ArcTan}\left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{8 \sqrt {d} e^2 \left (c^2 d+e\right )^{3/2}} \]

[Out]

-1/4*b*arcsin(c*x)/d/e^2+1/4*x^4*(a+b*arcsin(c*x))/d/(e*x^2+d)^2+1/8*b*c*(2*c^2*d+3*e)*arctan(x*(c^2*d+e)^(1/2
)/d^(1/2)/(-c^2*x^2+1)^(1/2))/e^2/(c^2*d+e)^(3/2)/d^(1/2)-1/8*b*c*x*(-c^2*x^2+1)^(1/2)/e/(c^2*d+e)/(e*x^2+d)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {270, 4815, 12, 481, 537, 222, 385, 211} \begin {gather*} \frac {x^4 (a+b \text {ArcSin}(c x))}{4 d \left (d+e x^2\right )^2}-\frac {b \text {ArcSin}(c x)}{4 d e^2}+\frac {b c \left (2 c^2 d+3 e\right ) \text {ArcTan}\left (\frac {x \sqrt {c^2 d+e}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{8 \sqrt {d} e^2 \left (c^2 d+e\right )^{3/2}}-\frac {b c x \sqrt {1-c^2 x^2}}{8 e \left (c^2 d+e\right ) \left (d+e x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*ArcSin[c*x]))/(d + e*x^2)^3,x]

[Out]

-1/8*(b*c*x*Sqrt[1 - c^2*x^2])/(e*(c^2*d + e)*(d + e*x^2)) - (b*ArcSin[c*x])/(4*d*e^2) + (x^4*(a + b*ArcSin[c*
x]))/(4*d*(d + e*x^2)^2) + (b*c*(2*c^2*d + 3*e)*ArcTan[(Sqrt[c^2*d + e]*x)/(Sqrt[d]*Sqrt[1 - c^2*x^2])])/(8*Sq
rt[d]*e^2*(c^2*d + e)^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 4815

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSin[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/Sqrt[1 -
 c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (GtQ[p, 0] ||
 (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))

Rubi steps

\begin {align*} \int \frac {x^3 \left (a+b \sin ^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx &=\frac {x^4 \left (a+b \sin ^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}-(b c) \int \frac {x^4}{4 d \sqrt {1-c^2 x^2} \left (d+e x^2\right )^2} \, dx\\ &=\frac {x^4 \left (a+b \sin ^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}-\frac {(b c) \int \frac {x^4}{\sqrt {1-c^2 x^2} \left (d+e x^2\right )^2} \, dx}{4 d}\\ &=-\frac {b c x \sqrt {1-c^2 x^2}}{8 e \left (c^2 d+e\right ) \left (d+e x^2\right )}+\frac {x^4 \left (a+b \sin ^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}+\frac {(b c) \int \frac {d-2 \left (c^2 d+e\right ) x^2}{\sqrt {1-c^2 x^2} \left (d+e x^2\right )} \, dx}{8 d e \left (c^2 d+e\right )}\\ &=-\frac {b c x \sqrt {1-c^2 x^2}}{8 e \left (c^2 d+e\right ) \left (d+e x^2\right )}+\frac {x^4 \left (a+b \sin ^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}-\frac {(b c) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{4 d e^2}+\frac {\left (b c \left (2 c^2 d+3 e\right )\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \left (d+e x^2\right )} \, dx}{8 e^2 \left (c^2 d+e\right )}\\ &=-\frac {b c x \sqrt {1-c^2 x^2}}{8 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {b \sin ^{-1}(c x)}{4 d e^2}+\frac {x^4 \left (a+b \sin ^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}+\frac {\left (b c \left (2 c^2 d+3 e\right )\right ) \text {Subst}\left (\int \frac {1}{d-\left (-c^2 d-e\right ) x^2} \, dx,x,\frac {x}{\sqrt {1-c^2 x^2}}\right )}{8 e^2 \left (c^2 d+e\right )}\\ &=-\frac {b c x \sqrt {1-c^2 x^2}}{8 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {b \sin ^{-1}(c x)}{4 d e^2}+\frac {x^4 \left (a+b \sin ^{-1}(c x)\right )}{4 d \left (d+e x^2\right )^2}+\frac {b c \left (2 c^2 d+3 e\right ) \tan ^{-1}\left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{8 \sqrt {d} e^2 \left (c^2 d+e\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.36, size = 152, normalized size = 0.99 \begin {gather*} \frac {-\frac {\frac {b c e x \sqrt {1-c^2 x^2} \left (d+e x^2\right )}{c^2 d+e}+2 a \left (d+2 e x^2\right )}{\left (d+e x^2\right )^2}-\frac {2 b \left (d+2 e x^2\right ) \text {ArcSin}(c x)}{\left (d+e x^2\right )^2}+\frac {b c \left (2 c^2 d+3 e\right ) \text {ArcTan}\left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{\sqrt {d} \left (c^2 d+e\right )^{3/2}}}{8 e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(a + b*ArcSin[c*x]))/(d + e*x^2)^3,x]

[Out]

(-(((b*c*e*x*Sqrt[1 - c^2*x^2]*(d + e*x^2))/(c^2*d + e) + 2*a*(d + 2*e*x^2))/(d + e*x^2)^2) - (2*b*(d + 2*e*x^
2)*ArcSin[c*x])/(d + e*x^2)^2 + (b*c*(2*c^2*d + 3*e)*ArcTan[(Sqrt[c^2*d + e]*x)/(Sqrt[d]*Sqrt[1 - c^2*x^2])])/
(Sqrt[d]*(c^2*d + e)^(3/2)))/(8*e^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1059\) vs. \(2(133)=266\).
time = 0.11, size = 1060, normalized size = 6.93 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^3,x,method=_RETURNVERBOSE)

[Out]

1/c^4*(a*c^6*(-1/2/e^2/(c^2*e*x^2+c^2*d)+1/4/e^2*d*c^2/(c^2*e*x^2+c^2*d)^2)-1/2*b*c^6*arcsin(c*x)/e^2/(c^2*e*x
^2+c^2*d)+1/4*b*c^8*arcsin(c*x)/e^2*d/(c^2*e*x^2+c^2*d)^2-1/16*b*c^6/e^2/(c^2*d+e)/(c*x+(-c^2*e*d)^(1/2)/e)*(-
(c*x+(-c^2*e*d)^(1/2)/e)^2+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e)^(1/2)+1/16*b*c^6/e^3*(-c
^2*e*d)^(1/2)/(c^2*d+e)/((c^2*d+e)/e)^(1/2)*ln((2*(c^2*d+e)/e+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2*e*d)^(1/2)/e)+2*
((c^2*d+e)/e)^(1/2)*(-(c*x+(-c^2*e*d)^(1/2)/e)^2+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e)^(1
/2))/(c*x+(-c^2*e*d)^(1/2)/e))-3/16*b*c^6/e^2/(-c^2*e*d)^(1/2)/((c^2*d+e)/e)^(1/2)*ln((2*(c^2*d+e)/e-2*(-c^2*e
*d)^(1/2)/e*(c*x-(-c^2*e*d)^(1/2)/e)+2*((c^2*d+e)/e)^(1/2)*(-(c*x-(-c^2*e*d)^(1/2)/e)^2-2*(-c^2*e*d)^(1/2)/e*(
c*x-(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e)^(1/2))/(c*x-(-c^2*e*d)^(1/2)/e))+3/16*b*c^6/e^2/(-c^2*e*d)^(1/2)/((c^2*d+
e)/e)^(1/2)*ln((2*(c^2*d+e)/e+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2*e*d)^(1/2)/e)+2*((c^2*d+e)/e)^(1/2)*(-(c*x+(-c^2
*e*d)^(1/2)/e)^2+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e)^(1/2))/(c*x+(-c^2*e*d)^(1/2)/e))-1
/16*b*c^6/e^2/(c^2*d+e)/(c*x-(-c^2*e*d)^(1/2)/e)*(-(c*x-(-c^2*e*d)^(1/2)/e)^2-2*(-c^2*e*d)^(1/2)/e*(c*x-(-c^2*
e*d)^(1/2)/e)+(c^2*d+e)/e)^(1/2)-1/16*b*c^6/e^3*(-c^2*e*d)^(1/2)/(c^2*d+e)/((c^2*d+e)/e)^(1/2)*ln((2*(c^2*d+e)
/e-2*(-c^2*e*d)^(1/2)/e*(c*x-(-c^2*e*d)^(1/2)/e)+2*((c^2*d+e)/e)^(1/2)*(-(c*x-(-c^2*e*d)^(1/2)/e)^2-2*(-c^2*e*
d)^(1/2)/e*(c*x-(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e)^(1/2))/(c*x-(-c^2*e*d)^(1/2)/e)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^3,x, algorithm="maxima")

[Out]

-1/4*(2*x^2*e + d)*a/(x^4*e^4 + 2*d*x^2*e^3 + d^2*e^2) - 1/4*((2*x^2*e + d)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c
*x + 1)) + 4*(x^4*e^4 + 2*d*x^2*e^3 + d^2*e^2)*integrate(1/4*(2*c*x^2*e + c*d)*e^(1/2*log(c*x + 1) + 1/2*log(-
c*x + 1))/(c^4*x^8*e^4 + (2*c^4*d*e^3 - c^2*e^4)*x^6 - c^2*d^2*x^2*e^2 + (c^4*d^2*e^2 - 2*c^2*d*e^3)*x^4 + (c^
2*x^6*e^4 + (2*c^2*d*e^3 - e^4)*x^4 + (c^2*d^2*e^2 - 2*d*e^3)*x^2 - d^2*e^2)*e^(log(c*x + 1) + log(-c*x + 1)))
, x))*b/(x^4*e^4 + 2*d*x^2*e^3 + d^2*e^2)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 449 vs. \(2 (136) = 272\).
time = 2.46, size = 939, normalized size = 6.14 \begin {gather*} \left [-\frac {8 \, a c^{4} d^{4} + 16 \, a d x^{2} e^{3} + {\left (2 \, b c^{3} d^{3} + 3 \, b c x^{4} e^{3} + 2 \, {\left (b c^{3} d x^{4} + 3 \, b c d x^{2}\right )} e^{2} + {\left (4 \, b c^{3} d^{2} x^{2} + 3 \, b c d^{2}\right )} e\right )} \sqrt {-c^{2} d^{2} - d e} \log \left (\frac {8 \, c^{4} d^{2} x^{4} - 8 \, c^{2} d^{2} x^{2} + x^{4} e^{2} - 4 \, {\left (2 \, c^{2} d x^{3} + x^{3} e - d x\right )} \sqrt {-c^{2} d^{2} - d e} \sqrt {-c^{2} x^{2} + 1} + d^{2} + 2 \, {\left (4 \, c^{2} d x^{4} - 3 \, d x^{2}\right )} e}{x^{4} e^{2} + 2 \, d x^{2} e + d^{2}}\right ) + 8 \, {\left (b c^{4} d^{4} + 2 \, b d x^{2} e^{3} + {\left (4 \, b c^{2} d^{2} x^{2} + b d^{2}\right )} e^{2} + 2 \, {\left (b c^{4} d^{3} x^{2} + b c^{2} d^{3}\right )} e\right )} \arcsin \left (c x\right ) + 8 \, {\left (4 \, a c^{2} d^{2} x^{2} + a d^{2}\right )} e^{2} + 16 \, {\left (a c^{4} d^{3} x^{2} + a c^{2} d^{3}\right )} e + 4 \, {\left (b c^{3} d^{3} x e + b c d x^{3} e^{3} + {\left (b c^{3} d^{2} x^{3} + b c d^{2} x\right )} e^{2}\right )} \sqrt {-c^{2} x^{2} + 1}}{32 \, {\left (c^{4} d^{5} e^{2} + d x^{4} e^{6} + 2 \, {\left (c^{2} d^{2} x^{4} + d^{2} x^{2}\right )} e^{5} + {\left (c^{4} d^{3} x^{4} + 4 \, c^{2} d^{3} x^{2} + d^{3}\right )} e^{4} + 2 \, {\left (c^{4} d^{4} x^{2} + c^{2} d^{4}\right )} e^{3}\right )}}, -\frac {4 \, a c^{4} d^{4} + 8 \, a d x^{2} e^{3} + {\left (2 \, b c^{3} d^{3} + 3 \, b c x^{4} e^{3} + 2 \, {\left (b c^{3} d x^{4} + 3 \, b c d x^{2}\right )} e^{2} + {\left (4 \, b c^{3} d^{2} x^{2} + 3 \, b c d^{2}\right )} e\right )} \sqrt {c^{2} d^{2} + d e} \arctan \left (\frac {{\left (2 \, c^{2} d x^{2} + x^{2} e - d\right )} \sqrt {c^{2} d^{2} + d e} \sqrt {-c^{2} x^{2} + 1}}{2 \, {\left (c^{4} d^{2} x^{3} - c^{2} d^{2} x + {\left (c^{2} d x^{3} - d x\right )} e\right )}}\right ) + 4 \, {\left (b c^{4} d^{4} + 2 \, b d x^{2} e^{3} + {\left (4 \, b c^{2} d^{2} x^{2} + b d^{2}\right )} e^{2} + 2 \, {\left (b c^{4} d^{3} x^{2} + b c^{2} d^{3}\right )} e\right )} \arcsin \left (c x\right ) + 4 \, {\left (4 \, a c^{2} d^{2} x^{2} + a d^{2}\right )} e^{2} + 8 \, {\left (a c^{4} d^{3} x^{2} + a c^{2} d^{3}\right )} e + 2 \, {\left (b c^{3} d^{3} x e + b c d x^{3} e^{3} + {\left (b c^{3} d^{2} x^{3} + b c d^{2} x\right )} e^{2}\right )} \sqrt {-c^{2} x^{2} + 1}}{16 \, {\left (c^{4} d^{5} e^{2} + d x^{4} e^{6} + 2 \, {\left (c^{2} d^{2} x^{4} + d^{2} x^{2}\right )} e^{5} + {\left (c^{4} d^{3} x^{4} + 4 \, c^{2} d^{3} x^{2} + d^{3}\right )} e^{4} + 2 \, {\left (c^{4} d^{4} x^{2} + c^{2} d^{4}\right )} e^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^3,x, algorithm="fricas")

[Out]

[-1/32*(8*a*c^4*d^4 + 16*a*d*x^2*e^3 + (2*b*c^3*d^3 + 3*b*c*x^4*e^3 + 2*(b*c^3*d*x^4 + 3*b*c*d*x^2)*e^2 + (4*b
*c^3*d^2*x^2 + 3*b*c*d^2)*e)*sqrt(-c^2*d^2 - d*e)*log((8*c^4*d^2*x^4 - 8*c^2*d^2*x^2 + x^4*e^2 - 4*(2*c^2*d*x^
3 + x^3*e - d*x)*sqrt(-c^2*d^2 - d*e)*sqrt(-c^2*x^2 + 1) + d^2 + 2*(4*c^2*d*x^4 - 3*d*x^2)*e)/(x^4*e^2 + 2*d*x
^2*e + d^2)) + 8*(b*c^4*d^4 + 2*b*d*x^2*e^3 + (4*b*c^2*d^2*x^2 + b*d^2)*e^2 + 2*(b*c^4*d^3*x^2 + b*c^2*d^3)*e)
*arcsin(c*x) + 8*(4*a*c^2*d^2*x^2 + a*d^2)*e^2 + 16*(a*c^4*d^3*x^2 + a*c^2*d^3)*e + 4*(b*c^3*d^3*x*e + b*c*d*x
^3*e^3 + (b*c^3*d^2*x^3 + b*c*d^2*x)*e^2)*sqrt(-c^2*x^2 + 1))/(c^4*d^5*e^2 + d*x^4*e^6 + 2*(c^2*d^2*x^4 + d^2*
x^2)*e^5 + (c^4*d^3*x^4 + 4*c^2*d^3*x^2 + d^3)*e^4 + 2*(c^4*d^4*x^2 + c^2*d^4)*e^3), -1/16*(4*a*c^4*d^4 + 8*a*
d*x^2*e^3 + (2*b*c^3*d^3 + 3*b*c*x^4*e^3 + 2*(b*c^3*d*x^4 + 3*b*c*d*x^2)*e^2 + (4*b*c^3*d^2*x^2 + 3*b*c*d^2)*e
)*sqrt(c^2*d^2 + d*e)*arctan(1/2*(2*c^2*d*x^2 + x^2*e - d)*sqrt(c^2*d^2 + d*e)*sqrt(-c^2*x^2 + 1)/(c^4*d^2*x^3
 - c^2*d^2*x + (c^2*d*x^3 - d*x)*e)) + 4*(b*c^4*d^4 + 2*b*d*x^2*e^3 + (4*b*c^2*d^2*x^2 + b*d^2)*e^2 + 2*(b*c^4
*d^3*x^2 + b*c^2*d^3)*e)*arcsin(c*x) + 4*(4*a*c^2*d^2*x^2 + a*d^2)*e^2 + 8*(a*c^4*d^3*x^2 + a*c^2*d^3)*e + 2*(
b*c^3*d^3*x*e + b*c*d*x^3*e^3 + (b*c^3*d^2*x^3 + b*c*d^2*x)*e^2)*sqrt(-c^2*x^2 + 1))/(c^4*d^5*e^2 + d*x^4*e^6
+ 2*(c^2*d^2*x^4 + d^2*x^2)*e^5 + (c^4*d^3*x^4 + 4*c^2*d^3*x^2 + d^3)*e^4 + 2*(c^4*d^4*x^2 + c^2*d^4)*e^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*asin(c*x))/(e*x**2+d)**3,x)

[Out]

Integral(x**3*(a + b*asin(c*x))/(d + e*x**2)**3, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^3,x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)*x^3/(e*x^2 + d)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{{\left (e\,x^2+d\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*asin(c*x)))/(d + e*x^2)^3,x)

[Out]

int((x^3*(a + b*asin(c*x)))/(d + e*x^2)^3, x)

________________________________________________________________________________________